MLOps, or Machine Learning Operations, is a multidisciplinary approach that bridges the gap between data science and operations. It standardizes and streamlines the lifecycle of machine learning model development, from data preparation and model training, to deployment and monitoring, ensuring the models are robust, reliable, and consistently updated. This practice not only reduces the time to production, but also mitigates the 'last mile' problem in AI implementation, enabling successful operationalization and delivery of ML models at scale. MLOps is an evolving field, developing in response to the increasing complexity of ML workloads and the need for effective collaboration, governance, and regulatory compliance.